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Interaction of particles in a deformed nematic liquid crystal
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We investigate how the interaction of particles mediated by an elastic deformation of a nematic liquid crystal
is influenced by the initial deformation of the director field. To this end, we calculate the interaction energy
between particles in a nematic cell with hybrid boundary conditions, homeotropic on the surface of one
confining plate and planar on the other. We find an analytic form of the interaction energy in the case of weak
anchoring on the surface of the particle. This interaction energy sensitively depends on the position of the two
particles as well as the interparticle distance and can be nonmonotonic with a minimum in its landscape. This
nontrivial energy landscape might lead to a chainlike superstructure of particles.
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[. INTRODUCTION emulsions. There have been several theoretical studies, and
as early as 1978 Lopatnikov and Namj@®] made an ana-
Colloidal systems and emulsions have attracted a gredytic calculation of the interactiok) between cylindrical par-
deal of interest in technology because of their various practicles in a nematic liquid crystal to obtain an anisotropic
tical applicationg1,2]. They have also become an important long-range form of dipole-dipole type witd~r 2, wherer
subject of fundamental science and it is of much interest hovis the interparticle distance. Later, Ramaswaaetyal. [30]
the constituent particles or droplets in such systems intera@nd Ruhwandl and Terentj¢21] found a quadrupole inter-
with each other and what kinds of structures and phases thesetionU~r % in the case of spherical particles in a nematic
interactions will bring about. The colloidal interactions me- liquid crystal with weak surface anchoring. A quadrupole
diated by the host fluid include van der Waals, electrostaticinteraction is known to be responsible for the formation of a
depletion [1,3], and fluctuation-induced4] and surface- chain of particles with boojum defedt$3,27 and the direc-
induced[5,6] forces. tion of the chain is oblique to the orientation of the host
Recently, growing attention has been paid to colloidal susnematic liquid crystal. Lubenskst al. showed by a phenom-
pensions and emulsions with anisotropic host fluids like lig-enological argument that a linear-chain struct{8el3,26¢
uid crystals as a class of composite mateifidls12. One of  parallel to that of the host nematic liquid crystal can be at-
the characteristic feature of liquid crystal emulsions and coltributed to the interaction between “dipoles” composed of a
loids is that the liquid crystals surrounding the particles areparticle and an accompanying hedgehog defect. The interac-
deformed because of anchoring on the surfaces of the pation between the “dipoles” was investigated also by a nu-
ticles. When the anchoring is strong enough, the particles ammerical computatiorf32]. We note that similar theoretical
accompanied by topological defects such as a hyperboliattempts have also been made on the particle interaction in a
hedgehog[8,13], a Saturn ring[14,15, or boojums[13]. smectic liquid crystal due to the layer displacement
Theoretical[16—19 and numerical[20-24 studies have [29,33,34. It should also be pointed out that the recent the-
been devoted to understanding the formation of topologicabretical and experimental progress has stimulated numerical
defects. studies on the aggregation process and structure formation in
Another interesting and important property of liquid crys- liquid crystal colloids[35,36.
tal emulsions and colloids is that the particles can interact via Recently, one of the present auth@Bsl.L.) developed a
the elastic deformation of liquid crystals due to the surfaceheoretical scheme for calculating the interaction potential in
anchoring of the particles, which can be directly measured nematic liquid crystdl37]. It is similar to previous theories
experimentally [25]. This elasticity-mediated interaction, [29—-31] in that the elastic deformation is assumed to be
which is of course absent in the usual colloidal suspensiongeak enough to evaluate the director field as an expansion in
and emulsions with an isotropic host fluid, has proved to playerms of the deformation from the ground state. This assump-
a crucial role in yielding a wide variety of superstructurestion facilitates an analytic treatment of the problem. One of
that have not been observed in conventional colloidal systhe main advantages of the treatment of R8&f] over the
tems. One of the striking examples experimentally observegrevious ones is that it can be applied to general cases of
is a linear-chain superstructuf®,13,26,27, and anisotropic  particles with arbitrary shape and anchoring orientation on
clusters[7,14] and periodic lattice$28] have also been re- the surface by introducing tensors characterizing the geom-
ported. The investigation and evaluation of the elasticity-etry of the particles. It has been sho{87,3g that the sym-
mediated interaction is therefore quite significant for undermetry of the particles crucially influences the properties of
standing and predicting the essential properties anthe interaction between them. In the case of spherical par-
behaviors of superstructures in liquid crystal colloids andticles the interaction is of quadrupolar nature llde-r ~° as
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noted above, while for less symmetric particles dipolar inter- z

actionsU~r 2 or even Coulomb interactiond ~r ! can

be expected. Moreover, we do not have to restrict the initial 2=d

state of the nematic liquid crystal to be uniform, and in a | | | | | Region1

recent papef39] we considered the interaction potential ina z=0.779d |- 5 — 5 —
cholesteric liquid crystal using this framework. 7 7 7
Ve

In this paper, utilizing the latter advantage we discuss how / /7 777 /7 Region II
the particle interaction is influenced by the initial deforma-
tion of the host liquid crystal. This work is motivated by a 7=0.340d - e e e o o -
recent experimen{28] showing the formation of a two- Region III
dimensional crystal structure by glycerol droplets dispersed =0
in a nematic liquid crystal. In this experiment the host nem- ®y X

atic is deformed due to the boundary conditions. At the upper
boundary the liquid crystal interfaces with the air, which g1 1 jjustration of the geometry of our system. The definition
leads to a homeotropic orientation there. On the other hangy regions 1, 11, and Ill is given in Sec. Il A.

a tangential boundary condition is imposed on the lower

boundary with glycerol, that is, liquid crystal molecules tend n©)(z)=(cosqyz,0, Singe2), (1)
to align parallel to this boundary. So far as we know, this is

the only experimental study of an emulsion in a deformedyith

liquid crystal[40], and no theoretical studies have been de-

voted to the effect of the initial deformation of a liquid crys- ™

tal on the interaction between particles immersed in it. Con- Qo= 24’ @

fining a liquid crystal by boundaries with different anchoring

implies the introduction of a length scdleote that the Frank which indeed satisfies the boundary conditions and the equi-
elasticity of a nematic liquid cryst4#1] has no characteris- librium condition V2n||n [41].

tic lengthg together with a nonuniform structure. We can  To describe the deformation of the director field with re-
therefore expect richer and less trivial properties than in thepect to the ground state, we introduce the deformation fields
case of a uniform nematic liquid crystal. Although our theo-u(r) andv(r) and the director fielah(r) can be written as
retical setup is slightly different from that in the experiment

of Ref.[28] in that the liquid crystal orientation at the lower n(r)=(cog goz+u(r)]cosv(r),sinv(r),

boundary is fixed in our calculation, we believe that our the- :

oretical investigation will shed light on the possible effect of singoz-+u(r)]Jcosv(r)). 3)
the initial deformation of liquid crystals on the structure of Notice thatu(r)=v(r)=0 atz=0 andd because we deal

liquid crystal colloids. _ with the situation where the boundary conditions are strong
This article is organized as follows. In Sec. Il we give aenough.

deta_iled the_oretical pr_ocedur_e to (_)btain an analytic form of The pulk Frank elastic energy in the one-constant ap-
the interaction potential. Using this result we discuss ho"‘broximation can be written g2
particles interact in a deformed nematic liquid crystal in Sec.

[Il. We conclude this article in Sec. IV together with a com- 1
parison of our theoretical results with the experimental find- FbZEKJ d?r, (dinj)(ain;)), (4)
ings.

with K being the elastic constant amd=(x,y). Herei,]

Il. CALCULATION OF THE INTERACTION POTENTIAL =X, Y, orzand in this subsection summations over repeated
indices are impliedexcept forx, y, andz below). We sub-
stitute Eq.(3) into Eg. (4) to describe the elastic energy in

We consider a nematic liquid crystal confined betweerterms of the deformation fields and v. Throughout this
two parallel plates with the distanckas depicted in Fig. 1. argument we restrict ourselves to the case of small deforma-
We set thez axis perpendicular to the plates and we set thdions and we retain up to second order termsa andv as in
origin so that the two plates are locatedzatO andd. We  our previous study37,39. After some calculations, utilizing
impose strong homeotropic and planar boundary conditionthe propertyu(r)=v(r)=0 atz=0 andd and assuming that
at z=d and 0, respectively, with the in-plane orientation the deformation vanishes at infinity, we arrive at
fixed along thex axis atz=0. This geometrical setup is 1 .
similar to that in the experiment by Nazarendoal.[28] and _ 2 2 2 2.2

different in that the molzcular orie)r/1tation at the lower bound- Fb_EKj d’ry fo dz{(Vu)“+(Vo)"=qv}. (9
ary has a fixed in-plane orientation in our treatment. We im-
pose the fixed boundary condition here for the simplicity of Apparently this energy is not positive definite because it be-
the calculation. In the case of the one-constant approximacomes smaller with increasingas long ag is independent
tion in the Frank elastic energy, it is easy to show that theof the position ¥v=0). The deformation mode corre-
ground state of the director field is sponds to the rotation of the director out of the plane.

A. Formulation of the problem
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After rotating the director out of th&z plane by the angle
/2, the director becomes uniforparallel to they axis) and
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the points. In the case of homeotropic anchoring/(s)
<0, and vice versa for planar anchoring.

obviously the elastic energy is smaller than in the case of Eq. \We restrict ourselves to the case of weak anchoring
(1), which is the implication of the apparent breakdown of (|w|r,/K<1, wherer is the characteristic dimension of
the positive definiteness of E¢5). In our case, however, the particles so that the director field is only slightly de-
such a rotation is prohibited because of the boundary condformed by the particles from its ground stafeq. (1)] [44].
tions and the energfp) is indeed positive definite. To show Then we can safely assume that the director fig(d) is
that and make the following discussion clear, we introducejefined throughout the system, even within particles, and
the Fourier transform, taking the boundary conditionsz at continuous so that the Fourier transfotf) is well defined.

=0 andd into account, as In dealing with the surface energy, we make a gradient
expansion of the director fielt(s) around the center of
gravity of the particlep, which we will denote by(P). This
treatment is justified wheny is sufficiently smaller than the
characteristic length of the elastic distortion in a nematic
liquid crystal d in our casé Since the bulk energl,, [Egs.

(4) and (5)] contains only terms up to second order in the
gradients, it is sufficient to make a gradient expansion up to
second order also for the surface enefgy Then the direc-

tor field can be represented as

d )
u(m,qz)zf dzrif dze "% "I sing,zu(r), (6)
0

where g,=2mqg,=m/d, with m being a positive integer.
We also definev(q, ,q,) in the same way. By substituting
the inverse Fourier transform

oo

1 2 ) J
u(r)= d?q, - = e "L sin 2mayz u(g, ,2map), —n(r® SC N ()
(r) (277)2J g 2 Goz u( ,2mdp) n(s)=n(rP)+(s—r )'ari“’)n(r )
(7
Jd J
+ — (S_r(p)) (s r(p))J (p) (p)n(r(p))+
and the same form af(r) into Eq. (5), we obtain ar
(10
Fb: 2 )2J' d?q, - 5 E {[d? +(2map)?] We can formally write the director field as=n(®+ &n, with
n® being the initial director field in the absence of particles
xXu(q,,2magy)u( —q, ,2map) defined in Eq(1). After some calculations using EG.0), we
find
+[of +(4m?—1)q3]v (g, ,2Mao)v(— . ,2M )},
8

[#(9): n<s>]2=A<k‘P(%n&”(r@’)nf")(r(p’)

which is obviously positive definite. We notice here that the
form of the elastic energgB) will be sensitive to the bound-
ary conditions. For instance, if a tangential boundary condi-
tion is imposed az=0 so that the director can rotate freely
on thez=0 plane, the allowed wave number in thelirec-
tion g, will be different, which leads to a different expression
of the free energy in reciprocal spageote that the free

+ n(ko)(r(p))én,(r(p))) (11

for the pth particle. Here we have defined the operator

energy in real spacé) is unaltered for this boundary con- d

ditiOﬂ]. Af(?):a(kpl))—’—ﬂj(f()l) r(p) 'yu‘?()l(? (p) (9r(p), (12)
Next we consider how particles introduced in our system ) ]

deform the director field. We write the surface energy on the

particles in the Rapini-Papoular ford3] as with o, B}, and y{f) being tensors characterizing the

geometry of the partlcles defined [8¥]

Fo=2> 55 d2SW9)[1(s)-n(9)]2. (9)

P Jo,
aP=2 ﬁ) d?SW(s) v(9) v(9), (13)
Herep is the index labeling the particles and the surface of ’

the particlep is denoted by(),. The integral is taken over
Qp andd?S s the surface element. The anchoring strength is

(14)
given byW(s) and¥(s) is the unit normal to the surface at

BRI =2 gﬁ dzsvaxs—r<p>>1vk<s>v|<s>
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- 5 ®) - particle and a cylindrical particle whose axis is parallel to the

Yifki = ﬁ) d*SW(s)(s—r)i(s=1r'P)v(s) v(9). y axis. In this case, to discuss the energetics of one particle,
P (15) We have to take into account the contribution from the elastic

deformation by the particles in liquid crystals, which is sec-

We note that in Eq(11) we have retained only terms up to ond order inW. It can be termed the self-energy and will be

second order in the gradients as mentioned above and up ttiscussed briefly in the next subsection.

first order in 5n asin the previous studyd7]. Second order When Eq. (18) is not SatISerdF(p) is a nonuniform func-

by particles on the interaction potentigd8], which is be-  ygpelled by the boundaries depending on the precise form of

yond the scope of this work. _ the geometry tensoms(” , B, andy(R) . For instance, we

Noticing  that  &n(r®)=(—u(r®)singyr® v (r®) - L ke :

o) g o = _ Qorz” v ’ consider a cylindrical particle with planar anchoringV (
u(rt*)cosqor;”) [from Eq.(3)] and using Eq(1), we obtain >0), whose axis is parallel to the axis and the radius is
the resultant form of the surface energy as a<d. When the contribution of the ends of the cylinder can

be neglected, a{?>aP=0, y{?) >1P) ~0, and oY

=BR=y2=0, which leads to

I\JI—‘

p
AP — APH[u(r®)sin 2q,r P

+2

AP[u(r®)cos Z4or P11+ A P)[v (1) cosgor ]

1
F(SB):(E o ZqSyg‘;)Zgsinzqorgp)Jrconst. (19)

+A(p)[v(r(p))sinq0r(p)]]_ (16 't is not difficult to show thaty!?) /P =3a%8; thus the
yz z first term in the parentheses of E{.9) dominates because

g3a®~(a/d)?<1. Noticing thata!?’>0, we can conclude
B. Energy of one particle that the energy of this cylinder is lower whe{f’ is smaller,

Before proceeding to the calculation of the interaction bed-€., close to the lower plate. This is consistent with the in-
tween particles mediated by the elastic deformation of thduitive argument that a cylinder with planar anchoring prefers
director field, we discuss here the energy of one particldts orientation along the director of the surrounding nematic
arising from the interaction between a liquid crystal and thdiquid crystal. We also notice that the contribution from the
particle surface. First let us consider the contribution fromself-energy cannot be neglected when the particle is suffi-
the first order terms iW. The first term of Eq(16) corre-  ciently close to one of the boundaries that the elastic defor-
sponds to it and from Ed1) it can be expressed as mation of the liquid crystal is strong.

Fgg)(r(p)) C. Interaction energy

2
zl o® 1 g J ,y(p) J cogq r(p) Now we proceed to the calculation of the elasticity-
2\ Zxxargp) “2%(r(P)2 0z mediated interaction energy. The total energy of the sygtem
is the sum of the bulk energly, [Eq. (5)] and the surface
1 o)+ g o) 2 _ ) energy[Eq. (16)]. We will denote the distortion profile that
) +Bzzz YZzzz( 7))z SirPgor s minimizes the total energy in the presence of particles by
(Umin(d. ,92) ,vmin(9. ,9,)), Wwhich can be determined
P 52 through the conditions
(p) IB(D) 7<P)
ZXZ ZZXZ( (p))
Xcosqorgp)sinqorgp). 17 HFptFo) _OFetFy 0. (20
ou(d .9z |, ., ov(di.a)f,
Therefore, if the particle is highly symmetric so that i i
(p)_a(p), (P — (p), 7,(p) y(p) '
2z Pooc Przz Jzzod Fzzez We find from calculation of Eq(20) that the resultant distor-
aP=pP =M _g (18) tion can be represented as a superposition of those due to one
Xz ZXZ YZZXZ ! .
particle, that is, uyir(q, ,0,)=2= umln and vmin(q, ,9;)
thenF () is independent of the particle positiof?). Simple =30 . Hereu?) andv(P) are the distortions due to a

examples of a particle satisfying E¢L8) are a spherical single particlep and written as

051711-4



INTERACTION OF PARTICLES IN A DEFORMED . .. PHYSICAL REVIEW E 66, 051711 (2002

ulP =u® (q, ,q,=2magp,r™) where we have defined the operators
1
1 DPg(r?) =5 (AL~ A 9(r®)sin 200r]
= — —D(p)sin Zmoﬂr(p) 2
KIqf +(2map)?] " ‘
+ AP [g(r®™)cos 2jor ], (23
xexp(—iq, -ri?), (21)

'D(zp)g(r(p)) :A&';/)[g(r(p))COSqorgp)]
v k=L ,d=2mdp,rP)

+APIgrP)singer P, (24
- _ 1 D‘z")sin quor(p) with g being an arbitrary function.
K[ +(4m?—1)qg3] ‘ The total energy can be obtained by substituting
) Umin(d, ,d,) andvmin(q, ,0,) into F=F,+Fg, and the result
Xexp(—iq.-ri”), (22) s written as
(p) 1 2 S 2 27,,(P) (ONTCR (")
F=2F —5 o) Carg 2, 2 2 AL+ 2may) Jult(a 2mep,rP)uff)(—a 2map 1)
= pV
+of +(4m*=1)g3lv (., 2mao 1P $) (—a 2map, 1)}, (25

whereF(p) is the energy due to the anchoring on the surface of the particle and is given(h7Edt can be further rewritten
asF=2 Fl )+Ep<p,Upp, with F(lp) andU,, being the energy of one particeand the pairwise interaction energy between

particlesp andp’, respectively. The former is given by

K 2 o
F(p)(r(p)) F(P)(r(p))_ dqu . a mz:l {[qi+(2m%)2]usrﬂ)r1 (h12mQO-r(p))um%(_%zm%:r(p))

2 (2m)?
+[f +(4m?—1)q3lo B (a,2may, 1) P (— g, ,2map, 1)} (26)

The second term of E26) is the self-energy due to the elastic deformation of the director field. UsingEfjsand(22) and
taking into account the double count in the summatiyX ., we can write the interaction enerdy,,, as

[

, 1 1 2
Upp,(r(p)'r(p))z_R(zTr)zf dzm.an;l

x sin 2magr Psin 2maer P exd —iq, - (riP—rP) 7. (27)

, 1
Z—ZD(lp)D(lp )+ —D(P)D(P )
q; +(2map) o +(4m*~1)q3

After some calculations presented in the Appendix, we obtain

Upp,(r(p),r(p’)):_ {D(p)p(p )[h (|r(pp )| r(p) r(p ))—h (|r(pp )| rgp)Jrrgp’))]
+DPD P hy(|rPP],r P = Py — hy(|r PP P (PN (28
|
wherer(PP) =P — ") and (£ ) cogqoVE%+ 77)
En=—"%—
1 1 o | codqeVE+(n—2md’]
hi(§7)= ==+ +
KN = m=l[ £+ (n—2md)? m21[ VE+(n—2md?
1 1 co 2+ (p+2md)?
. L] 9 L codaoVEr (pramdy] -
[+ (p+2md2 md VE+ (p+2md)?
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We note thath,(¢&,7) is associated with the variabie and D(zp)g(r(p))z2F{cosq0r§p)(a§(p)+qo)

its oscillating nature may be attributed to the presence of a

negative contribution—q3v? in the free energy5). This +singor PoP}aPg(r®). (34)
negative contribution reflects the fact that the initial de-

formed state is not a ground state and stabilized by the im- A. The case with|r®—r®)]—0

posed boundary conditions as argued above. Although of _ ) o

course we cannot draw a general conclusion from this spe- When we are interested in the limiting case wjt¥

cific example, this kind of oscillation in the interaction po- —r®")|—0 (to be more precisér® —r(P")|<d), we have to

tential might be a universal property in a deformed liquidretain only the singular contributions in E(28). Noticing

crystal. that the summations in Eq&9) and (30) remain finite for
The self-energy, the second term of Eg6), is formally  x,y—0, we have

written as (1/2) ,, (r®,rPY)| 5 and is regarded as

the energy of the elasticity-mediated interaction between thg, _ _ 1 DEDE) L DEDE) cosgor (PP
particle and the confining surfaces. Evidently, however, it is ~ PP R S R (D) 2 72 pep) |’
not well defined due to the singular terms in E(&9) and (35)

(30). Unfortunately, these singularities cannot be safely re-
moved because they depend ) through the operators wherer®P)=|r(PP)|= (P ()] s the distance between

D). To discuss the self-energy properly, one must go baclarticlesp andp’. Since in this caseg<d®~1/r PP and

to Eqg. (26) and introduce some cutoff in both the integral a_(p)f(r(pp')):_(9.(,3/)f(r(pp')) with f being an arbitrary func-

with respect tag, and the summation with respect o t'l th t '@(p) o) b tlv simpiified t
In a uniform nematic, the equations determining the equi-'f)n’ € operators’y™ andiZ;™ can be greatly simplified to

librium distortion profile[the same as Eq20)] are Poisson yield

equationg 37] and we can utilize the analogy with electro- 2 2 2
. : : : r d J 1

statics. Then the interaction between a particle and a surface ~——|n. nx —. (36

is equal to that between the particle and its image with the PP mK\ or®) or® | ¢ (PP

same sign and is always repulsive. In the case of a spherical

particle this interaction energy can be explicitly written, where n=n(@[(r®+r(P))/2] is the director of the ground

apart from a numerical factor, a$~(Wrg)?/KR®, with 1o state[Eq. (1)] at r=(r® +r(®"))/2. After a straightforward

andR being the particle radius and the distance between thga|culation of Eq(36), we obtain

particle and the wall, respectivelgee also Eq(37) below].

As in Sec. Il A below, we can expect that the result above 372

for a uniform nematic can be applied to our case of a de- U

formed nematic wherR is sufficiently smaller thard, the

distance between the confining surfaces. The equilibrium dis-

tance between a particle and a surface is determined by the

balance between this elastic force and others such as gravi

buoyancy, and the van der Waals fof@8].

j—— r(PP)y4_ .r(PP')y2
o= e L8124 10P)

X (NXrPP))24 3(nx r(PP)4], (37)

tﬁfrom Eq. (37) it can be shown that when we set abs

=(n-r®PP))/r(PP) | the interaction is attractive when (30
+4./30)/70< co6<(30+4+/30)/70 (30.56%|6|<70.12°
lll. DISCUSSION or 109.88% | 6| <149.44°) and repulsive otherwise.

Since the resultant form of the interaction enetgg) is It is important to note that Eq37) is equivalent to the
still complicated, we restrict the discussion below to severaf0rm of the interaction between spherical particles intro-
specific cases. Moreover, we consider only the simple case &t/céd in a nematic liquid crystal uniformly aligned along the
spherical particles with equal rading. Then a straightfor- 1 direction[37]. This result is quite natural because the nem-
ward calculation yields atic liquid crystal close to the particles is indeed oriented

locally along then direction. However, when we consider the

usual experimental conditiod28], we encounter situations
(AP — AP =T[(aP)2—(5P)2], (3)  with [r{PP)|=rP when the particles lie close to the lower
confining plate andr®’)|=d—r{® when the particles are
near the upper plate. Then the terms dropped in the above
discussion cannot be safely neglected because

ho(JrPPOrP+r®P))  has a singular term like

N -

AP =2T PP (i#]), (32)

with I'=47Wrg/15 andd{P=a/ar (P, which leads to : :
IV|rPP) 124 (1P 1 PN)2 in the former case and
DPg(rP)=T"{sin 2q,r P[(8{7)2— (o7 +2q)?] 1 rPP 124+ (2d -1 P — 1 P)2 in the latter{a similar argu-
holds also foh,(|r?P)|,r®+r(P)]. A full analysis
" (P)( 5(P) (P g(r(P) ment 1 : 2T 7L I A1 7)) )
2 coS Aoty (dx” +200) 727 19(1F), of the interaction energy requires numerical calculations and
(33) it will be given in a following subsection.
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B. The case with|r®—r(P)| -

In discussing the asymptotic behaviors fiof?) —r(P")|
—oo, it will be convenient to get back to the form of Eq.
(A2) together with Eqs(A3) and (A4) in the Appendix.
Since the modified Bessel functidt,(x) decays fast to be-
have asKy(x)~e *ym/2x for x—co, only the first terms
(m=1) in Egs.(A3) and (A4) will be relevant and the re-
sultant form of the interaction energy is

Uppr= (DPDPIKo(2q|r 7))

~ 27Kd
x{cog2qo(rP—rP))]—cog2qe(rP+rP )1}
+DPDEPIKo(V300lr "))

X {cog 2qo(rP —rP)]—cog 2qo(rP+rPNH).
(39)

Here we do not give a detailed discussion of the form of Eq

PHYSICAL REVIEW E 66, 051711 (2002

<r{P<0.779, we can determine the angl, that satisfies

30-44/30

cos(qorP)cos ¢, = 70

(39
and atr(P?)—0 the interaction is attractive whelitosd|
>|cos¢;| and repulsive otherwise. The region 0.840r (P
<0.779 will be denoted as region Il below. Finally, when

coS(qorP)>(30+4/30)/70, i.e.,r?<0.34al, we can de-
fine ¢, so that

30+44/30

cos(qor P)cos ¢, = 70

(40)
and atr(PP)—0 the interaction is attractive whegosd|
<|cosg¢|<|cose,| and repulsive otherwise. This region will
be denoted as region Il B

In Fig. 2 we plot the reduced interaction energy,,
=47Kd°U,,, /T"? as a function of the interparticle distance
for fixed ¢ in the case of P =r(P)=0.9d and 0.8, that is,
the particles are in region | and close to the upper confining

(38) but simply notice the absence of long-range interactiorplate with homeotropic anchoring. Different curves in Fig. 2

in our system, which is definitely attributed to the forbidding

correspond to differeng. We find from Fig. 2 that),,, has

of the fluctuation of Goldstone type due to the boundaryits minimum for ¢ smaller than some threshold value

conditions as argued in Sec. Il A.

C. Numerical analysis forr{P=r{P"

As noted in Sec. Il A, further analytical treatment of the
resultant energy,,» is unfortunately almost impossible be-
cause Eq(28) contains unsolvable infinite series as well as

(=15° and 30° forrgp)=0.9d and 0.8, respectively and
purely repulsive otherwise. Far—0, the interaction is re-
pulsive for all cases as argued above. When the interaction
potential has its minimum, the minimum positiotbecomes
smaller and the absolute value of the minimum energy be-
comes larger for smallep andrgp). We also observe from
the inset of Fig. B) that a small maximum can also be

fourth-order derivatives. Moreover, the interaction energy isyresent in the interaction potential and this oscillating nature

dependent on four independent variable§®)),,, r{,

and rgp'). Therefore it is unrealistic to discuss the behavior
of the interaction energy ,, in this four-dimensional space.

may be attributed to the form of E¢30), containing trigo-
nometric functions as mentioned in the previous section.
To observe the interaction energy landscape more clearly,

Here we consider the situation where the two particles lie irve show contour plots of),,, in Fig. 3. Because of sym-

a plane parallel to the confining plates so thg=r{P"
which can be realized more easily in experiments.

metry, mirror planes are present in these contour plots and it
is therefore sufficient to show only the regioﬁ?p') ,rg,pp')

We first note that the numerical results presented below-(. It is obvious from Fig. 3 that ., has its minimum at

have been obtained with the aid mAPLE 6.01. We also no-
tice that in the numerical evaluations the infinite seBés ,

some finiter ?") with r{PP)=0. This implies that two par-
ticles tend to align parallel to theaxis (the direction of the

hazlg(v)a been replaced by summations of the first 200 terMgyeq planar anchoring on one boundewhile keeping some

2m-1 and we observed almost no difference from the result§injte gistance. We also observe that the energy landscape is

obtained by taking the summations of the first 100 terms, - deformed for® (=r®))—0.8d, which is consistent

Therefore the contribution to the summation from terms with . . z 2 . . .

m>100 can be safely neglected in the arguments below. with the oscnla.tory potential curve n the Inset of Figbp .
Before presenting the numerical results, we discuss thﬁewe emphasize that such a potential minimum as obtained

. . . . @) re has never been observed in the previous theoretical
asymptotic behavior of the interaction energyr _’(; studies concerning the interaction between particles medi-
using the result of Sec. IIA. In our case wheré’

) , ated by the elastic deformation of nematic liquid crystals.
=r§p ), we can write the interparticle distance &8P’ Then, other mechanisms such as the hard-¢orsoft-core
= (r cos¢,r sin¢,0) (hereafter we abbreviaté®?") asr) and

repulsion, which are irrelevant in liquid crystals, must be
cosf=(n-r®PP))/r=cos¢cosr®). Then if cod(gysr)

incorporated to discuss the formation of superstructures of
<(30-4y30)/70, i.e.,rP>0.77, coff<(30—430)/ particles in a liquid crystal. Although the formation of a
70 is always satisfied and the interaction is repulsive a

chain structure with a well-defined interparticle distance ob-
, . _ _ Served in Refd.8,13,24 can be attributed purely to the mini-

r(PP) 0 for all ¢. We will denote this regionr(

>0.779 as region |.

mization of the elastic energy of nematic liquid crystals, the
On the other hand, when (30 interparticle distance is determined by the balance between
—4./30)/70< co(qorP)<(30+430)/70, that is, 0.34D

the dipole-dipole attraction and repulsion arising from the
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%)é FIG. 3. Contour plots of the reduced interaction eneudgy; for
—400 - @ r®P=rPY=0.0d and (b) r®=r)=0.8d corresponding to

— i i iati pp’)
FIG. 2. Reduced pairwise interaction energyl,, F(lgp.,)Z(reglon I).. Herer, andr, are the abbreviations of?") and
=47Kd®U,, /T"? as a function of reduced particle distanéd for 'y 'eéspectively. The numbers in the plots are the values of

@ r®P=rP)=0.9d and(b) rP=rP)=0.8d (region ). The num- U, - For clarity we have plotted only curves with,,, <0.
bers indicate the angl¢ betweerr(PP") and thex axis. The inset of _ _
(b) is a magnified plot forp=30°. is also present, as can be seen in the insets of Figsadd
4(c). The complexity of the interaction landscape is more
: , evident in Fig. 5, which shows that it is sensitively depen-
unfavorable elastic deformation due to the presence of tOpOdent on thez coordinate of the particle position. We also
logical defects. The situation is therefore different from ours . ) . : )
because we deal with the case of weak anchoring and n%bserve from Fig. &) that the mteractl,on can be attractive
topological defects. We also point out that in REI8] the ~ €ven at¢=90° in the case of ¥’ =r*)=0.5d, although
formation of a crystal structure by glycerol droplets was at-this attraction is rather weak as can be seen from Rig. 4
tributed to the coexistence of a dipole-dipole attraction and a Finally, in Figs. 6 and 7 we show the interaction energy of
quadrupole-quadrupole repulsion between droplets. In theparticles in region Iil, close to the lower confining plates
interpretation, however, the dipole-dipole interaction can bawith planar anchoring for(®=r{P)=0.32 and 0.H. We
present only in the case of particles with lower symmetriesotice that ¢, ¢$,)=(67.17°,10.68°) and (69.87°,29.32°)
(they regard the highly distorted region as a parjieled in  for r{P=0.32 and 0.4, respectively. The interaction at
our case we deal with particles with a spherical symmetry._.g is attractive for¢,< ¢< ¢, and repulsive otherwise as
Therefore we believe that we have presented an example @fiscussed above. From Figgbpand &d) we notice that the
the possibility of forming a superstructure of particles in apehavior of the interaction around is similar to that in the
liquid crystal of a completely different origin from previous case of region Il. However, it can be seen from Figs) &nd
examples. 6(c) the interaction potential close 6, sensitively depends
We also present the interaction energy for region Il withon ¢ as well agr (P . In the case of (P’ =0.32, the interac-
r(P=r(P)=0.75d, 0.5d, and 0.38 in Figs. 4 and 5. Note tion potential has its minimum for alb< ¢, and is a mono-
that ¢p;=27.33°, 61.26°, and 66.50° fot”=0.75, 0.5d,  tonic function for¢> ¢,. On the other hand, we find that for
and 0.3%l, respectively. As discussed above, the interactiorrgp)zo.ld the interaction potential is repulsive and mono-
is repulsive for¢> ¢, and attractive forp<<¢, at r—0. tonic for ¢=<20°, and a potential minimum appears @t
From Fig. 4 we can also observe a potential minimum as in=25°, whose value becomes smaller rapidly with increasing
region | for ¢ larger than but close t¢;, and it becomes ¢ before reachingp,. We also observe that at=30° the
less evident and eventually vanishes in some cases witinteraction possesses a large maximum in contrast to the
larger ¢. The oscillating behavior of the interaction potential other casegnotice the difference in the vertical scale from
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FIG. 4. The same as Fig. 2 f¢a) r{®=r{?)=0.75d, (b) r{P r/d
=r{P)=0.5d, and(c) r’P?=r{P)=0.35d (region Il). The insets are FIG. 5. The same as Fig. 3 féa) rP=r®"=0.75, (b) r®

magnified plots for(a) r{P=r)=0.75d, ¢=45° and(c) r{P =r{P)=0.5d, and(c) r’?=r{P)=0.35d corresponding to Fig. 4
=r{P)=0.3d, $p=67°. (region I).
the other graphs The interaction landscape given in Fig. 7 IV CONCLUDING REMARKS

also shows its complexity and the sensitive dependence on T4 jnyestigate the effect of the initial deformation of a
the z coordinate of the particles as in region Il. A weak at-|iquid crystal on the formation of superstructures of particles
tractive interaction as argued above and found in Fi) 5 jmmersed in it, we calculated the interaction energy between
(r®=0.5d) is also present in region Iil. However, the di- particles induced by the elastic deformation of a nematic
rection along which it exists is different according g : liquid crystal confined in a cell with hybrid boundary condi-
¢=0° for rgp):OBZ:i and ¢=90° forrgp)zo.ld. tions, strong homeotropic anchoring on the surface of one
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FIG. 6. The same as Figs. 2 and 4 taJ,(b) r”?=r®")=0.32 and(c),(d) r®=r)=0.1d (region Ill). The curves have been given
separately for the sam@P just for clarity of the presentation.

confining plate, and strong planar anchoring with fixed in-1. As shown in Fig. 2a), the interaction sensitively depends

plane orientation on the other. In the case of weak anchoringp ¢, the angle between the distané®”) and the direction
on the particle surface and the resultant weak elastic defogf the planar anchoring on the lower boundary, at distances
mation of the director field, we obtained an analytic formula|arger than the cell Spacir@_ The interaction is pure]y re-
[Eq. (28)] for the interaction energy. The interaction energypyisive for shorter distances. So if the particles are confined
has a much more complex form than in the case of uniformyt high density, the particles should form slightly deformed
nematics or smectics in previous theoretical studies, whiclhexagonal ordering due to repulsive interaction. When the
reflects the presence of the initial deformed structure of ensity is low, we anticipate the formation of a chainlike
nematic IIqUId Crystal due to the bOUndary conditions. WeSuperstructure in the same regi@]mse to the upper homeo-
showed by numerical evaluation of E@8) that the interac-  tropic boundary, due to the interaction with the potential
tion potential crucially and sensitively depends on how theminimum at¢ =0, which is parallel to the direction of pla-
two particles are placed with respect to the deformed strucaar anchoring at the lower boundary.
ture of a nematic liquid crystal and shows a rich and non- We also point out several causes that can make the experi-
trivial potential landscape. One of the significant charactermental result$28] different from our calculation. One is that
istics is that under appropriately chosen conditions theén the experiments the in-plane orientation on the lower
interaction potential can have a minimum, in contrast withboundary is not fixed and depends on the preparation of the
those in previous theoretical studies concerning theexperimental system. A similar calculation with this tangen-
elasticity-mediated interaction in liquid crystals. This com-tial boundary condition imposed on the lower plate is pos-
plex interaction might significantly influence the aggregationsible and a qualitatively different result is expected because
kinetics as well as the equilibrium structure of colloidal par-in that case the rotation associated witin Eq. (3) becomes
ticles. a Goldstone mode. However, in the course of the calculation
Recent experiments by Nazarenkoal. [28] show the we will suffer from an infrared divergence associated with
formation of a crystal structure of droplets in a hybrid cell. this Goldstone mode and a careful treatment will be neces-
The density of droplets in the crystalline hexagonal structuresary. One cannot rule out another possibility: that the in-
they observe is quite high. Our results anticipate such a hexplane orientation on the lower boundary is not uniform, in
agonal structure only when the particles are confined to givavhich case analytical treatment will of course be far more
high density near the upper homeotropic boundary in regiowlifficult. Another possible reason for the difference from the
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- 0.6 APPENDIX: EVALUATION OF U,
= 04l By noticing the identity
] 1 f ea 1
0.2 2 _
d =—Ky(alr,|), (A1)
(27T)2 qlqi-f—az 2 0 |L|
0 02 04 06 08 1 12 14 , , » .
r:/d with a being a positive number ar, the modified Bessel
function of zeroth order, we can rewrite the interaction en-
(b) ergy (27) as
1 -
Upp,(r(p),r(p’))
T 2m
'vc
2 ~h (|r(pp)| rgp)_|_r§p’))]

+DPDPIh

~Py([rPPIr P+ r )3, (A2)

0 02 04 oe/d 8 1 12 14

I'x ! ! 1
wherer(PP) =) —(P) and we have defined
FIG. 7. The same as Figs. 3 and 5 fay r{®=r{*)=0.3 and

(b) r’P=rP)=0.1d corresponding to Fig. €region Ill).

ﬁl<§,n>=mE:1 Ko(2maeé)cog2mayn),  (A3)

experimental results is that as noted in R@B] the particle

may not be treated as a sphere. Although the weak anchoring  _ *

condition is satisfied in the experiment of Nazarergtal. ha(&,m)= 2 K0<2 \ m?- —q0§>cos(2mq077)
[28,44), for a relatively large droplet there might be a case m=t (Ad)
where|W|r,/K~1 and our analyses cannot be justified. In

such a case we have to deal with the particle as “coated” byysjng the formula found in Ref45], we obtain
the region with strong director deformatip®8]. The “coat”

will be deformed according to the initial director deforma- Qoé - 1
tion of the nematic liquid crystal and the operat@$) in hy(&,7m)= y+|n 0 )+ —
Eq. (28) will have a more complicated form than in our 4o &%+ 7
treatment for spherical particles presented in this paper. w
In conclusion, we believe that we have proposed a differ- + 7 { 1
ent possibility of forming a superstructure of particles by 4do m=1 | &+ (p—mmlqg)?
deforming the liquid crystal in which the particles are im-
mersed. Moreover, we have pointed out the possibility of the 1 2qo
formation of a chain structure which might be observable in * JE+ (p+mmlqe)? mm (AS)

an experiment with carefully prepared boundary conditions

and a low particle density. The energy of a deformed ”qu'dwherey is Euler's constant.

crystal is higher than that of its ground state and the incor- To evaluate Eq(A4), we make use of the formuf&6]
poration of foreign particles can relax the excess energy due
to the imposed deformation, thus leading to the possibility of Zixe
a richer variety of behaviors of foreign particles than in the fc cos{p X% cogm¢) =K, mx)

case of an undeformed liquid crystal. To our knowledge, no 0 VE2+X

attention has been paid so far to the effect of the deformation (AB)
of a liquid crystal on the formation of superstructures of

foreign particles, and we hope that experimental and theoretwhich holds forX>0 andm>p>0. By settingp=1/2, we
ical studies in this direction will be promoted. have
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- [, 1 ~ 7 7 cogqoVE + 7%)
mE:1 K0< m2— ZX)COS(mY) hZ(f’”):ZNO(q‘)f)“LT%W
- co{%m . +4L S [COijojéZHn—mw/io)z]
= = Qo m=1 &+ (np—malqg)
Jo dg W m§=:1 cogm¢)cogmy). n—Mmmi(o

(A7)

(A9)

VE+ (n+ma/qg)?

whereNg is the Neumann function of zeroth order. We arrive
1 7 at Eq.(28) by using Eqs(A2), (A5), (A9), and(2).
E cogm¢)cogmyY)=— §+ 5 E [8(L+Y—2m) We note thath,(&,7) andh,(&,7) become singular a
=1 m=— —0. For finite , however, this singularity is attributed to
v the first term of Eqs(A5) and (A9), which exactly vanishes
+8(—-Y—-2 A
(¢ mm)], (A8) in the evaluation of Eq(A2). Therefore the resultant form

and taking care of the inequalitg=0, we obtain, by setting (28) is V\{e” defined even in the case of°”’|=0 as long as
X=20op¢ andY =27, that r(P) £ p(P"),

N cog goV &+ (n+ mﬂ'/%)z]]

Noticing the identity
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