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Interaction of particles in a deformed nematic liquid crystal
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We investigate how the interaction of particles mediated by an elastic deformation of a nematic liquid crystal
is influenced by the initial deformation of the director field. To this end, we calculate the interaction energy
between particles in a nematic cell with hybrid boundary conditions, homeotropic on the surface of one
confining plate and planar on the other. We find an analytic form of the interaction energy in the case of weak
anchoring on the surface of the particle. This interaction energy sensitively depends on the position of the two
particles as well as the interparticle distance and can be nonmonotonic with a minimum in its landscape. This
nontrivial energy landscape might lead to a chainlike superstructure of particles.
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I. INTRODUCTION

Colloidal systems and emulsions have attracted a g
deal of interest in technology because of their various pr
tical applications@1,2#. They have also become an importa
subject of fundamental science and it is of much interest h
the constituent particles or droplets in such systems inte
with each other and what kinds of structures and phases t
interactions will bring about. The colloidal interactions m
diated by the host fluid include van der Waals, electrosta
depletion @1,3#, and fluctuation-induced@4# and surface-
induced@5,6# forces.

Recently, growing attention has been paid to colloidal s
pensions and emulsions with anisotropic host fluids like
uid crystals as a class of composite materials@7–12#. One of
the characteristic feature of liquid crystal emulsions and c
loids is that the liquid crystals surrounding the particles
deformed because of anchoring on the surfaces of the
ticles. When the anchoring is strong enough, the particles
accompanied by topological defects such as a hyperb
hedgehog@8,13#, a Saturn ring@14,15#, or boojums@13#.
Theoretical @16–19# and numerical@20–24# studies have
been devoted to understanding the formation of topolog
defects.

Another interesting and important property of liquid cry
tal emulsions and colloids is that the particles can interact
the elastic deformation of liquid crystals due to the surfa
anchoring of the particles, which can be directly measu
experimentally @25#. This elasticity-mediated interaction
which is of course absent in the usual colloidal suspens
and emulsions with an isotropic host fluid, has proved to p
a crucial role in yielding a wide variety of superstructur
that have not been observed in conventional colloidal s
tems. One of the striking examples experimentally obser
is a linear-chain superstructure@8,13,26,27#, and anisotropic
clusters@7,14# and periodic lattices@28# have also been re
ported. The investigation and evaluation of the elastic
mediated interaction is therefore quite significant for und
standing and predicting the essential properties
behaviors of superstructures in liquid crystal colloids a
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emulsions. There have been several theoretical studies,
as early as 1978 Lopatnikov and Namiot@29# made an ana-
lytic calculation of the interactionU between cylindrical par-
ticles in a nematic liquid crystal to obtain an anisotrop
long-range form of dipole-dipole type withU;r 23, wherer
is the interparticle distance. Later, Ramaswamyet al. @30#
and Ruhwandl and Terentjev@31# found a quadrupole inter
actionU;r 25 in the case of spherical particles in a nema
liquid crystal with weak surface anchoring. A quadrupo
interaction is known to be responsible for the formation o
chain of particles with boojum defects@13,27# and the direc-
tion of the chain is oblique to the orientation of the ho
nematic liquid crystal. Lubenskyet al.showed by a phenom
enological argument that a linear-chain structure@8,13,26#
parallel to that of the host nematic liquid crystal can be
tributed to the interaction between ‘‘dipoles’’ composed o
particle and an accompanying hedgehog defect. The inte
tion between the ‘‘dipoles’’ was investigated also by a n
merical computation@32#. We note that similar theoretica
attempts have also been made on the particle interaction
smectic liquid crystal due to the layer displaceme
@29,33,34#. It should also be pointed out that the recent th
oretical and experimental progress has stimulated nume
studies on the aggregation process and structure formatio
liquid crystal colloids@35,36#.

Recently, one of the present authors~B.I.L.! developed a
theoretical scheme for calculating the interaction potentia
a nematic liquid crystal@37#. It is similar to previous theories
@29–31# in that the elastic deformation is assumed to
weak enough to evaluate the director field as an expansio
terms of the deformation from the ground state. This assu
tion facilitates an analytic treatment of the problem. One
the main advantages of the treatment of Ref.@37# over the
previous ones is that it can be applied to general case
particles with arbitrary shape and anchoring orientation
the surface by introducing tensors characterizing the ge
etry of the particles. It has been shown@37,38# that the sym-
metry of the particles crucially influences the properties
the interaction between them. In the case of spherical
ticles the interaction is of quadrupolar nature likeU;r 25 as
©2002 The American Physical Society11-1
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noted above, while for less symmetric particles dipolar int
actionsU;r 23 or even Coulomb interactionsU;r 21 can
be expected. Moreover, we do not have to restrict the in
state of the nematic liquid crystal to be uniform, and in
recent paper@39# we considered the interaction potential in
cholesteric liquid crystal using this framework.

In this paper, utilizing the latter advantage we discuss h
the particle interaction is influenced by the initial deform
tion of the host liquid crystal. This work is motivated by
recent experiment@28# showing the formation of a two
dimensional crystal structure by glycerol droplets disper
in a nematic liquid crystal. In this experiment the host ne
atic is deformed due to the boundary conditions. At the up
boundary the liquid crystal interfaces with the air, whi
leads to a homeotropic orientation there. On the other ha
a tangential boundary condition is imposed on the low
boundary with glycerol, that is, liquid crystal molecules te
to align parallel to this boundary. So far as we know, this
the only experimental study of an emulsion in a deform
liquid crystal @40#, and no theoretical studies have been d
voted to the effect of the initial deformation of a liquid cry
tal on the interaction between particles immersed in it. C
fining a liquid crystal by boundaries with different anchorin
implies the introduction of a length scale~note that the Frank
elasticity of a nematic liquid crystal@41# has no characteris
tic lengths! together with a nonuniform structure. We ca
therefore expect richer and less trivial properties than in
case of a uniform nematic liquid crystal. Although our the
retical setup is slightly different from that in the experime
of Ref. @28# in that the liquid crystal orientation at the lowe
boundary is fixed in our calculation, we believe that our th
oretical investigation will shed light on the possible effect
the initial deformation of liquid crystals on the structure
liquid crystal colloids.

This article is organized as follows. In Sec. II we give
detailed theoretical procedure to obtain an analytic form
the interaction potential. Using this result we discuss h
particles interact in a deformed nematic liquid crystal in S
III. We conclude this article in Sec. IV together with a com
parison of our theoretical results with the experimental fin
ings.

II. CALCULATION OF THE INTERACTION POTENTIAL

A. Formulation of the problem

We consider a nematic liquid crystal confined betwe
two parallel plates with the distanced as depicted in Fig. 1
We set thez axis perpendicular to the plates and we set
origin so that the two plates are located atz50 andd. We
impose strong homeotropic and planar boundary conditi
at z5d and 0, respectively, with the in-plane orientatio
fixed along thex axis at z50. This geometrical setup i
similar to that in the experiment by Nazarenkoet al. @28# and
different in that the molecular orientation at the lower boun
ary has a fixed in-plane orientation in our treatment. We
pose the fixed boundary condition here for the simplicity
the calculation. In the case of the one-constant approxi
tion in the Frank elastic energy, it is easy to show that
ground state of the director field is
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n(0)~z!5~cosq0z,0, sinq0z!, ~1!

with

q0[
p

2d
, ~2!

which indeed satisfies the boundary conditions and the e
librium condition¹2nin @41#.

To describe the deformation of the director field with r
spect to the ground state, we introduce the deformation fie
u(r) andv(r) and the director fieldn(r) can be written as

n~r!5„cos@q0z1u~r!#cosv~r!,sinv~r!,

sin@q0z1u~r!#cosv~r!…. ~3!

Notice thatu(r)5v(r)50 at z50 and d because we dea
with the situation where the boundary conditions are stro
enough.

The bulk Frank elastic energy in the one-constant
proximation can be written as@42#

Fb5
1

2
KE d2r'~] inj !~] inj !, ~4!

with K being the elastic constant andr'5(x,y). Here i , j
5x, y, or z and in this subsection summations over repea
indices are implied~except forx, y, andz below!. We sub-
stitute Eq.~3! into Eq. ~4! to describe the elastic energy i
terms of the deformation fieldsu and v. Throughout this
argument we restrict ourselves to the case of small defor
tions and we retain up to second order terms inu andv as in
our previous study@37,39#. After some calculations, utilizing
the propertyu(r)5v(r)50 atz50 andd and assuming tha
the deformation vanishes at infinity, we arrive at

Fb5
1

2
KE d2r'E

0

d

dz$~“u!21~“v !22q0
2v2%. ~5!

Apparently this energy is not positive definite because it
comes smaller with increasingv as long asv is independent
of the position (“v50). The deformation modev corre-
sponds to the rotation of the director out of thexz plane.

FIG. 1. Illustration of the geometry of our system. The definiti
of regions I, II, and III is given in Sec. III A.
1-2
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INTERACTION OF PARTICLES IN A DEFORMED . . . PHYSICAL REVIEW E 66, 051711 ~2002!
After rotating the director out of thexz plane by the angle
p/2, the director becomes uniform~parallel to they axis! and
obviously the elastic energy is smaller than in the case of
~1!, which is the implication of the apparent breakdown
the positive definiteness of Eq.~5!. In our case, however
such a rotation is prohibited because of the boundary co
tions and the energy~5! is indeed positive definite. To show
that and make the following discussion clear, we introdu
the Fourier transform, taking the boundary conditions az
50 andd into account, as

u~q' ,qz!5E d2r'E
0

d

dze2 iq'•r' sinqzz u~r!, ~6!

whereqz52mq05mp/d, with m being a positive integer
We also definev(q' ,qz) in the same way. By substitutin
the inverse Fourier transform

u~r!5
1

~2p!2E d2q'•

2

d (
m51

`

eiq'•r' sin 2mq0z u~q',2mq0!,

~7!

and the same form ofv(r) into Eq. ~5!, we obtain

Fb5
1

2
K

1

~2p!2E d2q'•

2

d (
m51

`

$@q'
2 1~2mq0!2#

3u~q',2mq0!u~2q',2mq0!

1@q'
2 1~4m221!q0

2#v~q',2mq0!v~2q',2mq0!%,

~8!

which is obviously positive definite. We notice here that t
form of the elastic energy~8! will be sensitive to the bound
ary conditions. For instance, if a tangential boundary con
tion is imposed atz50 so that the director can rotate free
on thez50 plane, the allowed wave number in thez direc-
tion qz will be different, which leads to a different expressio
of the free energy in reciprocal space@note that the free
energy in real space~5! is unaltered for this boundary con
dition#.

Next we consider how particles introduced in our syst
deform the director field. We write the surface energy on
particles in the Rapini-Papoular form@43# as

Fs5(
p

R
Vp

d2SW~s!@n~s!•n~s!#2. ~9!

Herep is the index labeling the particles and the surface
the particlep is denoted byVp . The integral is taken ove
Vp andd2S is the surface element. The anchoring strength
given byW(s) andn(s) is the unit normal to the surface a
05171
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f

i-

e

i-

e

f

is

the point s. In the case of homeotropic anchoring,W(s)
,0, and vice versa for planar anchoring.

We restrict ourselves to the case of weak anchor
(uWur 0 /K!1, wherer 0 is the characteristic dimension o
the particles! so that the director field is only slightly de
formed by the particles from its ground state@Eq. ~1!# @44#.
Then we can safely assume that the director fieldn(r) is
defined throughout the system, even within particles, a
continuous so that the Fourier transform~6! is well defined.

In dealing with the surface energy, we make a gradi
expansion of the director fieldn(s) around the center o
gravity of the particlep, which we will denote byr(p). This
treatment is justified whenr 0 is sufficiently smaller than the
characteristic length of the elastic distortion in a nema
liquid crystal (d in our case!. Since the bulk energyFb @Eqs.
~4! and ~5!# contains only terms up to second order in t
gradients, it is sufficient to make a gradient expansion up
second order also for the surface energyFs . Then the direc-
tor field can be represented as

n~s!5n~r(p)!1~s2r(p)! i

]

]r i
(p)

n~r(p)!

1
1

2
~s2r(p)! i~s2r(p)! j

]

]r i
(p)

]

]r j
(p)

n~r(p)!1•••.

~10!

We can formally write the director field asn5n(0)1dn, with
n(0) being the initial director field in the absence of particl
defined in Eq.~1!. After some calculations using Eq.~10!, we
find

@n~s!•n~s!#2.A kl
(p)S 1

2
nk

(0)~r(p)!nl
(0)~r(p)!

1nk
(0)~r(p)!dnl~r(p)! D ~11!

for the pth particle. Here we have defined the operator

A kl
(p)5akl

(p)1b jkl
(p) ]

]r j
(p)

1g i jkl
(p) ]

]r i
(p)

]

]r j
(p)

, ~12!

with akl
(p) , b jkl

(p) , and g i jkl
(p) being tensors characterizing th

geometry of the particles, defined as@37#

akl
(p)52 R

Vp

d2SW~s!nk~s!n l~s!, ~13!

b jkl
(p)52 R

Vp

d2SW~s!~s2r(p)! jnk~s!n l~s!, ~14!
1-3
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g i jkl
(p) 5 R

Vp

d2SW~s!~s2r(p)! i~s2r(p)! jnk~s!n l~s!.

~15!

We note that in Eq.~11! we have retained only terms up t
second order in the gradients as mentioned above and u
first order indn as in the previous study@37#. Second order
terms indn will be required to discuss the effect of screeni
by particles on the interaction potential@38#, which is be-
yond the scope of this work.

Noticing that dn(r(p)).„2u(r(p))sinq0rz
(p) ,v(r(p)),

u(r(p))cosq0rz
(p)
… @from Eq. ~3!# and using Eq.~1!, we obtain

the resultant form of the surface energy as

Fs5
1

2 (
p

A kl
(p)@nk

(0)~r(p)!nl
(0)~r(p)!#

1(
p

H 1

2
~A zz

(p)2A xx
(p)!@u~r(p)!sin 2q0r z

(p)#

1A xz
(p)@u~r(p)!cos 2q0r z

(p)#1A xy
(p)@v~r(p)!cosq0r z

(p)#

1A yz
(p)@v~r(p)!sinq0r z

(p)#J . ~16!

B. Energy of one particle

Before proceeding to the calculation of the interaction
tween particles mediated by the elastic deformation of
director field, we discuss here the energy of one part
arising from the interaction between a liquid crystal and
particle surface. First let us consider the contribution fro
the first order terms inW. The first term of Eq.~16! corre-
sponds to it and from Eq.~1! it can be expressed as

Fs0
(p)~r(p)!

5
1

2 S axx
(p)1bzxx

(p) ]

]r z
(p)

1gzzxx
(p) ]2

]~r z
(p)!2D cos2q0r z

(p)

1
1

2 S azz
(p)1bzzz

(p) ]

]r z
(p)

1gzzzz
(p) ]2

]~r z
(p)!2D sin2q0r z

(p)

1S axz
(p)1bzxz

(p) ]

]r z
(p)

1gzzxz
(p) ]2

]~r z
(p)!2D

3cosq0r z
(p)sinq0r z

(p) . ~17!

Therefore, if the particle is highly symmetric so that

axx
(p)5azz

(p) , bzxx
(p) 5bzzz

(p) , gzzxx
(p) 5gzzzz

(p) ,

axz
(p)5bzxz

(p)5gzzxz
(p) 50, ~18!

thenFs0
(p) is independent of the particle positionr(p). Simple

examples of a particle satisfying Eq.~18! are a spherica
05171
to
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particle and a cylindrical particle whose axis is parallel to t
y axis. In this case, to discuss the energetics of one part
we have to take into account the contribution from the ela
deformation by the particles in liquid crystals, which is se
ond order inW. It can be termed the self-energy and will b
discussed briefly in the next subsection.

When Eq.~18! is not satisfied,Fs0
(p) is a nonuniform func-

tion of r(p), which implies that the particle is attracted o
repelled by the boundaries depending on the precise form
the geometry tensorsakl

(p) , b jkl
(p) , andg i jkl

(p) . For instance, we
consider a cylindrical particle with planar anchoring (W
.0), whose axis is parallel to thex axis and the radius is
a!d. When the contribution of the ends of the cylinder c
be neglected, azz

(p).axx
(p).0, gzzzz

(p) .gzzxx
(p) .0, and axz

(p)

5b i jk
(p)5gzzxz

(p) 50, which leads to

Fs0
(p).S 1

2
azz

(p)22q0
2gzzzz

(p) D sin2q0r z
(p)1const. ~19!

It is not difficult to show thatgzzzz
(p) /azz

(p).3a2/8; thus the
first term in the parentheses of Eq.~19! dominates becaus

q0
2a2;(a/d)2!1. Noticing thatazz

(p).0, we can conclude
that the energy of this cylinder is lower whenr z

(p) is smaller,
i.e., close to the lower plate. This is consistent with the
tuitive argument that a cylinder with planar anchoring pref
its orientation along the director of the surrounding nema
liquid crystal. We also notice that the contribution from th
self-energy cannot be neglected when the particle is su
ciently close to one of the boundaries that the elastic de
mation of the liquid crystal is strong.

C. Interaction energy

Now we proceed to the calculation of the elasticit
mediated interaction energy. The total energy of the systeF
is the sum of the bulk energyFb @Eq. ~5!# and the surface
energy@Eq. ~16!#. We will denote the distortion profile tha
minimizes the total energy in the presence of particles
„umin(q' ,qz),vmin(q' ,qz)…, which can be determined
through the conditions

d~Fb1Fs!

du~q' ,qz!
U

umin ,vmin

5
d~Fb1Fs!

dv~q' ,qz!
U

umin ,vmin

50. ~20!

We find from calculation of Eq.~20! that the resultant distor
tion can be represented as a superposition of those due to
particle, that is, umin(q' ,qz)5(pumin

(p) and vmin(q' ,qz)

5(pvmin
(p) . Here umin

(p) and vmin
(p) are the distortions due to

single particlep and written as
1-4
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umin
(p) 5umin

(p) ~q' ,qz52mq0 ,r(p)!

52
1

K@q'
2 1~2mq0!2#

D 1
(p)sin 2mq0r z

(p)

3exp~2 iq'•r'
(p)!, ~21!

vmin
(p) 5vmin

(p) ~q' ,qz52mq0 ,r(p)!

52
1

K@q'
2 1~4m221!q0

2#
D 2

(p)sin 2mq0r z
(p)

3exp~2 iq'•r'
(p)!, ~22!
05171
where we have defined the operators

D 1
(p)g~r(p)!5

1

2
~A zz

(p)2A xx
(p)!@g~r(p)!sin 2q0r z

(p)#

1A xz
(p)@g~r(p)!cos 2q0r z

(p)#, ~23!

D 2
(p)g~r(p)!5A xy

(p)@g~r(p)!cosq0r z
(p)#

1A yz
(p)@g~r(p)!sinq0r z

(p)#, ~24!

with g being an arbitrary function.
The total energy can be obtained by substituti

umin(q' ,qz) andvmin(q' ,qz) into F5Fb1Fs , and the result
is written as
en
F5(
p

Fs0
(p)2

K

2

1

~2p!2E d2q'•

2

d (
m51

`

(
p

(
p8

$@q'
2 1~2mq0!2#umin

(p) ~q',2mq0 ,r(p)!umin
(p8)~2q',2mq0 ,r(p8)!

1@q'
2 1~4m221!q0

2#vmin
(p) ~q',2mq0 ,r(p)!vmin

(p8)~2q',2mq0 ,r(p8)!%, ~25!

whereFs0
(p) is the energy due to the anchoring on the surface of the particle and is given in Eq.~17!. It can be further rewritten

asF5(pF1
(p)1(p,p8Upp8 with F1

(p) andUpp being the energy of one particlep and the pairwise interaction energy betwe

particlesp andp8, respectively. The former is given by

F1
(p)~r(p)!5Fs0

(p)~r(p)!2
K

2

1

~2p!2E d2q'•

2

d (
m51

`

$@q'
2 1~2mq0!2#umin

(p) ~q',2mq0 ,r(p)!umin
(p) ~2q',2mq0 ,r(p)!

1@q'
2 1~4m221!q0

2#vmin
(p) ~q',2mq0 ,r(p)!vmin

(p) ~2q',2mq0 ,r(p)!%. ~26!

The second term of Eq.~26! is the self-energy due to the elastic deformation of the director field. Using Eqs.~21! and~22! and
taking into account the double count in the summation(p(p8 , we can write the interaction energyUpp8 as

Upp8~r(p),r(p8)!52
1

K

1

~2p!2E d2q'•

2

d (
m51

` F 1

q'
2 1~2mq0!2

D 1
(p)D 1

(p8)1
1

q'
2 1~4m221!q0

2
D 2

(p)D 2
(p8)G

3sin 2mq0r z
(p)sin 2mq0r z

(p8) exp@2 iq'•~r'
(p)2r'

(p8)!#. ~27!

After some calculations presented in the Appendix, we obtain

Upp8~r(p),r(p8)!52
1

4pK
$D 1

(p)D 1
(p8)@h1~ ur'

(pp8)u,r z
(p)2r z

(p8)!2h1~ ur'
(pp8)u,r z

(p)1r z
(p8)!#

1D 2
(p)D 2

(p8)@h2~ ur'
(pp8)u,r z

(p)2r z
(p8)!2h2~ ur'

(pp8)u,r z
(p)1r z

(p8)!#%, ~28!
wherer'
(pp8)5r'

(p)2r'
(p8) and

h1~j,h!5
1

Aj21h2
1 (

m51

` H 1

Aj21~h22md!2

1
1

Aj21~h12md!2
2

1

mdJ , ~29!
h2~j,h!5
cos~q0Aj21h2!

Aj21h2

1 (
m51

` H cos@q0Aj21~h22md!2#

Aj21~h22md!2

1
cos@q0Aj21~h12md!2#

Aj21~h12md!2 J . ~30!
1-5
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We note thath2(j,h) is associated with the variablev and
its oscillating nature may be attributed to the presence o
negative contribution2q0

2v2 in the free energy~5!. This
negative contribution reflects the fact that the initial d
formed state is not a ground state and stabilized by the
posed boundary conditions as argued above. Although
course we cannot draw a general conclusion from this s
cific example, this kind of oscillation in the interaction p
tential might be a universal property in a deformed liqu
crystal.

The self-energy, the second term of Eq.~26!, is formally
written as (1/2)Upp8(r

(p),r(p8))ur(p)5r(p8) and is regarded a
the energy of the elasticity-mediated interaction between
particle and the confining surfaces. Evidently, however, i
not well defined due to the singular terms in Eqs.~29! and
~30!. Unfortunately, these singularities cannot be safely
moved because they depend onr z

(p) through the operators
D1,2

(p) . To discuss the self-energy properly, one must go b
to Eq. ~26! and introduce some cutoff in both the integr
with respect toq' and the summation with respect tom.

In a uniform nematic, the equations determining the eq
librium distortion profile@the same as Eq.~20!# are Poisson
equations@37# and we can utilize the analogy with electr
statics. Then the interaction between a particle and a sur
is equal to that between the particle and its image with
same sign and is always repulsive. In the case of a sphe
particle this interaction energy can be explicitly writte
apart from a numerical factor, asU;(Wr0

4)2/KR5, with r 0

andR being the particle radius and the distance between
particle and the wall, respectively@see also Eq.~37! below#.
As in Sec. III A below, we can expect that the result abo
for a uniform nematic can be applied to our case of a
formed nematic whenR is sufficiently smaller thand, the
distance between the confining surfaces. The equilibrium
tance between a particle and a surface is determined by
balance between this elastic force and others such as gra
buoyancy, and the van der Waals force@28#.

III. DISCUSSION

Since the resultant form of the interaction energy~28! is
still complicated, we restrict the discussion below to seve
specific cases. Moreover, we consider only the simple cas
spherical particles with equal radiusr 0. Then a straightfor-
ward calculation yields

1

2
~A zz

(p)2A xx
(p)!5G@~]z

(p)!22~]x
(p)!2#, ~31!

A i j
(p)52G] i

(p)] j
(p) ~ iÞ j !, ~32!

with G[4pWr0
4/15 and] j

(p)[]/]r j
(p) , which leads to

D 1
(p)g~r(p)!5G$sin 2q0r z

(p)@~]z
(p)!22~]x

(p)12q0!2#

12 cos 2q0r z
(p)~]x

(p)12q0!]z
(p)%g~r(p)!,

~33!
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D 2
(p)g~r(p)!52G$cosq0r z

(p)~]x
(p)1q0!

1sinq0r z
(p)]z

(p)%]y
(p)g~r(p)!. ~34!

A. The case withzr„p…Àr„p8…z\0

When we are interested in the limiting case withur(p)

2r(p8)u→0 ~to be more precise,ur(p)2r(p8)u!d), we have to
retain only the singular contributions in Eq.~28!. Noticing
that the summations in Eqs.~29! and ~30! remain finite for
x,y→0, we have

Upp8.2
1

4pK FD 1
(p)D 1

(p8) 1

r (pp8)
1D 2

(p)D 2
(p8) cosq0r (pp8)

r (pp8) G ,

~35!

where r (pp8)5ur(pp8)u[ur(p)2r(p8)u is the distance betwee
particlesp andp8. Since in this caseq0!] i

(p);1/r (pp8) and

] i
(p) f (r(pp8))52] i

(p8) f (r(pp8)) with f being an arbitrary func-
tion, the operatorsD 1

(p) andD 2
(p) can be greatly simplified to

yield

Upp8.2
G2

pK S n•
]

]r(p)D 2S n3
]

]r(p)D 2
1

r (pp8)
, ~36!

wheren[n(0)@(r(p)1r(p8))/2# is the director of the ground
state@Eq. ~1!# at r5(r(p)1r(p8))/2. After a straightforward
calculation of Eq.~36!, we obtain

Upp8.
3G2

pK~r (pp8)!9
@8~n•r(pp8)!4224~n•r(pp8)!2

3~n3r(pp8)!213~n3r(pp8)!4#. ~37!

From Eq. ~37! it can be shown that when we set cosu

5(n•r(pp8))/r (pp8), the interaction is attractive when (3
14A30)/70,cos2u,(3014A30)/70 (30.56°,uuu,70.12°
or 109.88°,uuu,149.44°) and repulsive otherwise.

It is important to note that Eq.~37! is equivalent to the
form of the interaction between spherical particles int
duced in a nematic liquid crystal uniformly aligned along t
n direction@37#. This result is quite natural because the ne
atic liquid crystal close to the particles is indeed orient
locally along then direction. However, when we consider th
usual experimental conditions@28#, we encounter situations

with ur'
(pp8)u*r z

(p) when the particles lie close to the lowe

confining plate andur'
(pp8)u*d2r z

(p) when the particles are
near the upper plate. Then the terms dropped in the ab
discussion cannot be safely neglected beca

h1(ur'
(pp8)u,r z

(p)1r z
(p8)) has a singular term like

1/Aur'
(pp8)u21(r z

(p)1r z
(p8))2 in the former case and

1/Aur'
(pp8)u21(2d2r z

(p)2r z
(p8))2 in the latter@a similar argu-

ment holds also forh2(ur'
(pp8)u,r z

(p)1r z
(p8))]. A full analysis

of the interaction energy requires numerical calculations
it will be given in a following subsection.
1-6
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B. The case withzr„p…Àr„p8…z\`

In discussing the asymptotic behaviors forur(p)2r(p8)u
→`, it will be convenient to get back to the form of Eq
~A2! together with Eqs.~A3! and ~A4! in the Appendix.
Since the modified Bessel functionK0(x) decays fast to be
have asK0(x);e2xAp/2x for x→`, only the first terms
(m51) in Eqs.~A3! and ~A4! will be relevant and the re
sultant form of the interaction energy is

Upp8.2
1

2pKd
„D 1

(p)D 1
(p8)K0~2q0ur'

(pp8)u!

3$cos@2q0~r z
(p)2r z

(p8)!#2cos@2q0~r z
(p)1r z

(p8)!#%

1D 2
(p)D 2

(p8)K0~A3q0ur'
(pp8)u!

3$cos@2q0~r z
(p)2r z

(p8)!#2cos@2q0~r z
(p)1r z

(p8)!#%….

~38!

Here we do not give a detailed discussion of the form of E
~38! but simply notice the absence of long-range interact
in our system, which is definitely attributed to the forbiddin
of the fluctuation of Goldstone type due to the bound
conditions as argued in Sec. II A.

C. Numerical analysis for r z
„p…Är z

„p8…

As noted in Sec. III A, further analytical treatment of th
resultant energyUpp8 is unfortunately almost impossible be
cause Eq.~28! contains unsolvable infinite series as well
fourth-order derivatives. Moreover, the interaction energy
dependent on four independent variables (r(pp8))x,y , r z

(p) ,

and r z
(p8) . Therefore it is unrealistic to discuss the behav

of the interaction energyUpp8 in this four-dimensional space
Here we consider the situation where the two particles lie

a plane parallel to the confining plates so thatr z
(p)5r z

(p8) ,
which can be realized more easily in experiments.

We first note that the numerical results presented be
have been obtained with the aid ofMAPLE 6.01. We also no-
tice that in the numerical evaluations the infinite series(m51

`

have been replaced by summations of the first 200 te
(m51

200 and we observed almost no difference from the res
obtained by taking the summations of the first 100 term
Therefore the contribution to the summation from terms w
m.100 can be safely neglected in the arguments below

Before presenting the numerical results, we discuss
asymptotic behavior of the interaction energy atr (pp8)→0
using the result of Sec. III A. In our case wherer z

(p)

5r z
(p8) , we can write the interparticle distance asr(pp8)

5(r cosf,r sinf,0) ~hereafter we abbreviater (pp8) asr ) and
cosu5(n•r(pp8))/r 5cosf cos(q0rz

(p)). Then if cos2(q0rz
(p))

,(3024A30)/70, i.e., r z
(p).0.779d, cos2u,(3024A30)/

70 is always satisfied and the interaction is repulsive
r (pp8)→0 for all f. We will denote this regionr z

(p)

.0.779d as region I. On the other hand, when (3
24A30)/70,cos2(q0rz

(p)),(3014A30)/70, that is, 0.340d
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,r z
(p),0.779d, we can determine the anglef1 that satisfies

cos2~q0r z
(p)!cos2f15

3024A30

70
, ~39!

and at r (pp8)→0 the interaction is attractive whenucosfu
.ucosf1u and repulsive otherwise. The region 0.340d,r z

(p)

,0.779d will be denoted as region II below. Finally, whe
cos2(q0rz

(p)).(3014A30)/70, i.e.,r z
(p),0.340d, we can de-

fine f2 so that

cos2~q0r z
(p)!cos2f25

3014A30

70
, ~40!

and atr (pp8)→0 the interaction is attractive whenucosf1u
,ucosfu,ucosf2u and repulsive otherwise. This region wi
be denoted as region III.

In Fig. 2 we plot the reduced interaction energyŪpp8
[4pKd5Upp8 /G2 as a function of the interparticle distancer

for fixed f in the case ofr z
(p)5r z

(p8)50.9d and 0.8d, that is,
the particles are in region I and close to the upper confin
plate with homeotropic anchoring. Different curves in Fig.
correspond to differentf. We find from Fig. 2 thatŪpp8 has
its minimum for f smaller than some threshold value
(.15° and 30° forr z

(p)50.9d and 0.8d, respectively! and
purely repulsive otherwise. Forr→0, the interaction is re-
pulsive for all cases as argued above. When the interac
potential has its minimum, the minimum positionr becomes
smaller and the absolute value of the minimum energy
comes larger for smallerf and r z

(p) . We also observe from
the inset of Fig. 2~b! that a small maximum can also b
present in the interaction potential and this oscillating nat
may be attributed to the form of Eq.~30!, containing trigo-
nometric functions as mentioned in the previous section.

To observe the interaction energy landscape more cle
we show contour plots ofŪpp8 in Fig. 3. Because of sym
metry, mirror planes are present in these contour plots an

is therefore sufficient to show only the regionr x
(pp8) ,r y

(pp8)

.0. It is obvious from Fig. 3 thatŪpp8 has its minimum at

some finiter x
(pp8) with r y

(pp8)50. This implies that two par-
ticles tend to align parallel to thex axis ~the direction of the
fixed planar anchoring on one boundary! while keeping some
finite distance. We also observe that the energy landscap

more deformed forr z
(p) (5r z

(p8))50.8d, which is consistent
with the oscillatory potential curve in the inset of Fig. 2~b!.

We emphasize that such a potential minimum as obtai
here has never been observed in the previous theore
studies concerning the interaction between particles m
ated by the elastic deformation of nematic liquid crysta
Then, other mechanisms such as the hard-core~or soft-core!
repulsion, which are irrelevant in liquid crystals, must
incorporated to discuss the formation of superstructures
particles in a liquid crystal. Although the formation of
chain structure with a well-defined interparticle distance o
served in Refs.@8,13,26# can be attributed purely to the min
mization of the elastic energy of nematic liquid crystals, t
interparticle distance is determined by the balance betw
the dipole-dipole attraction and repulsion arising from t
1-7
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unfavorable elastic deformation due to the presence of to
logical defects. The situation is therefore different from ou
because we deal with the case of weak anchoring and
topological defects. We also point out that in Ref.@28# the
formation of a crystal structure by glycerol droplets was
tributed to the coexistence of a dipole-dipole attraction an
quadrupole-quadrupole repulsion between droplets. In t
interpretation, however, the dipole-dipole interaction can
present only in the case of particles with lower symmetr
~they regard the highly distorted region as a particle! and in
our case we deal with particles with a spherical symme
Therefore we believe that we have presented an examp
the possibility of forming a superstructure of particles in
liquid crystal of a completely different origin from previou
examples.

We also present the interaction energy for region II w

r z
(p)5r z

(p8)50.75d, 0.5d, and 0.35d in Figs. 4 and 5. Note
that f1527.33°, 61.26°, and 66.50° forr z

(p)50.75d, 0.5d,
and 0.35d, respectively. As discussed above, the interact
is repulsive forf.f1 and attractive forf,f1 at r→0.
From Fig. 4 we can also observe a potential minimum as
region I for f larger than but close tof1, and it becomes
less evident and eventually vanishes in some cases
largerf. The oscillating behavior of the interaction potent

FIG. 2. Reduced pairwise interaction energyŪpp8
[4pKd5Upp8 /G2 as a function of reduced particle distancer /d for

~a! r z
(p)5r z

(p8)50.9d and~b! r z
(p)5r z

(p8)50.8d ~region I!. The num-

bers indicate the anglef betweenr(pp8) and thex axis. The inset of
~b! is a magnified plot forf530°.
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is also present, as can be seen in the insets of Figs. 4~a! and
4~c!. The complexity of the interaction landscape is mo
evident in Fig. 5, which shows that it is sensitively depe
dent on thez coordinate of the particle position. We als
observe from Fig. 5~b! that the interaction can be attractiv

even atf590° in the case ofr z
(p)5r z

(p8)50.5d, although
this attraction is rather weak as can be seen from Fig. 4~b!.

Finally, in Figs. 6 and 7 we show the interaction energy
particles in region III, close to the lower confining plate

with planar anchoring forr z
(p)5r z

(p8)50.32d and 0.1d. We
notice that (f1 ,f2)5(67.17°,10.68°) and (69.87°,29.32°
for r z

(p)50.32d and 0.1d, respectively. The interaction atr
→0 is attractive forf2,f,f1 and repulsive otherwise a
discussed above. From Figs. 6~b! and 6~d! we notice that the
behavior of the interaction aroundf1 is similar to that in the
case of region II. However, it can be seen from Figs. 6~a! and
6~c! the interaction potential close tof2 sensitively depends
on f as well asr z

(p) . In the case ofr z
(p)50.32d, the interac-

tion potential has its minimum for allf,f2 and is a mono-
tonic function forf.f2. On the other hand, we find that fo
r z

(p)50.1d the interaction potential is repulsive and mon
tonic for f&20°, and a potential minimum appears atf
.25°, whose value becomes smaller rapidly with increas
f before reachingf2. We also observe that atf530° the
interaction possesses a large maximum in contrast to
other cases~notice the difference in the vertical scale fro

FIG. 3. Contour plots of the reduced interaction energyŪpp8 for

~a! r z
(p)5r z

(p8)50.9d and ~b! r z
(p)5r z

(p8)50.8d corresponding to

Fig. 2 ~region I!. Herer x andr y are the abbreviations ofr x
(pp8) and

r y
(pp8) , respectively. The numbers in the plots are the values

Ūpp8 . For clarity we have plotted only curves withŪpp8<0.
1-8
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INTERACTION OF PARTICLES IN A DEFORMED . . . PHYSICAL REVIEW E 66, 051711 ~2002!
the other graphs!. The interaction landscape given in Fig.
also shows its complexity and the sensitive dependence
the z coordinate of the particles as in region II. A weak a
tractive interaction as argued above and found in Fig. 5~b!
(r z

(p)50.5d) is also present in region III. However, the d
rection along which it exists is different according tor z

(p) :
f50° for r z

(p)50.32d andf590° for r z
(p)50.1d.

FIG. 4. The same as Fig. 2 for~a! r z
(p)5r z

(p8)50.75d, ~b! r z
(p)

5r z
(p8)50.5d, and~c! r z

(p)5r z
(p8)50.35d ~region II!. The insets are

magnified plots for~a! r z
(p)5r z

(p8)50.75d, f545° and ~c! r z
(p)

5r z
(p8)50.35d, f567°.
05171
on

IV. CONCLUDING REMARKS

To investigate the effect of the initial deformation of
liquid crystal on the formation of superstructures of partic
immersed in it, we calculated the interaction energy betw
particles induced by the elastic deformation of a nema
liquid crystal confined in a cell with hybrid boundary cond
tions, strong homeotropic anchoring on the surface of o

FIG. 5. The same as Fig. 3 for~a! r z
(p)5r z

(p8)50.75d, ~b! r z
(p)

5r z
(p8)50.5d, and ~c! r z

(p)5r z
(p8)50.35d corresponding to Fig. 4

~region II!.
1-9
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FIG. 6. The same as Figs. 2 and 4 for~a!,~b! r z
(p)5r z

(p8)50.32d and ~c!,~d! r z
(p)5r z

(p8)50.1d ~region III!. The curves have been give
separately for the samer z

(p) just for clarity of the presentation.
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confining plate, and strong planar anchoring with fixed
plane orientation on the other. In the case of weak ancho
on the particle surface and the resultant weak elastic de
mation of the director field, we obtained an analytic formu
@Eq. ~28!# for the interaction energy. The interaction ener
has a much more complex form than in the case of unifo
nematics or smectics in previous theoretical studies, wh
reflects the presence of the initial deformed structure o
nematic liquid crystal due to the boundary conditions. W
showed by numerical evaluation of Eq.~28! that the interac-
tion potential crucially and sensitively depends on how
two particles are placed with respect to the deformed st
ture of a nematic liquid crystal and shows a rich and n
trivial potential landscape. One of the significant charac
istics is that under appropriately chosen conditions
interaction potential can have a minimum, in contrast w
those in previous theoretical studies concerning
elasticity-mediated interaction in liquid crystals. This com
plex interaction might significantly influence the aggregat
kinetics as well as the equilibrium structure of colloidal pa
ticles.

Recent experiments by Nazarenkoet al. @28# show the
formation of a crystal structure of droplets in a hybrid ce
The density of droplets in the crystalline hexagonal struct
they observe is quite high. Our results anticipate such a h
agonal structure only when the particles are confined to g
high density near the upper homeotropic boundary in reg
05171
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h
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I. As shown in Fig. 2~a!, the interaction sensitively depend

on f, the angle between the distancer(pp8) and the direction
of the planar anchoring on the lower boundary, at distan
larger than the cell spacingd. The interaction is purely re-
pulsive for shorter distances. So if the particles are confi
at high density, the particles should form slightly deform
hexagonal ordering due to repulsive interaction. When
density is low, we anticipate the formation of a chainlik
superstructure in the same region~close to the upper homeo
tropic boundary!, due to the interaction with the potentia
minimum atf50, which is parallel to the direction of pla
nar anchoring at the lower boundary.

We also point out several causes that can make the ex
mental results@28# different from our calculation. One is tha
in the experiments the in-plane orientation on the low
boundary is not fixed and depends on the preparation of
experimental system. A similar calculation with this tange
tial boundary condition imposed on the lower plate is po
sible and a qualitatively different result is expected beca
in that case the rotation associated withv in Eq. ~3! becomes
a Goldstone mode. However, in the course of the calcula
we will suffer from an infrared divergence associated w
this Goldstone mode and a careful treatment will be nec
sary. One cannot rule out another possibility: that the
plane orientation on the lower boundary is not uniform,
which case analytical treatment will of course be far mo
difficult. Another possible reason for the difference from t
1-10
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INTERACTION OF PARTICLES IN A DEFORMED . . . PHYSICAL REVIEW E 66, 051711 ~2002!
experimental results is that as noted in Ref.@28# the particle
may not be treated as a sphere. Although the weak ancho
condition is satisfied in the experiment of Nazarenkoet al.
@28,44#, for a relatively large droplet there might be a ca
where uWur 0 /K;1 and our analyses cannot be justified.
such a case we have to deal with the particle as ‘‘coated’
the region with strong director deformation@38#. The ‘‘coat’’
will be deformed according to the initial director deform
tion of the nematic liquid crystal and the operatorsD1,2

(p) in
Eq. ~28! will have a more complicated form than in ou
treatment for spherical particles presented in this paper.

In conclusion, we believe that we have proposed a dif
ent possibility of forming a superstructure of particles
deforming the liquid crystal in which the particles are im
mersed. Moreover, we have pointed out the possibility of
formation of a chain structure which might be observable
an experiment with carefully prepared boundary conditio
and a low particle density. The energy of a deformed liq
crystal is higher than that of its ground state and the inc
poration of foreign particles can relax the excess energy
to the imposed deformation, thus leading to the possibility
a richer variety of behaviors of foreign particles than in t
case of an undeformed liquid crystal. To our knowledge,
attention has been paid so far to the effect of the deforma
of a liquid crystal on the formation of superstructures
foreign particles, and we hope that experimental and theo
ical studies in this direction will be promoted.

FIG. 7. The same as Figs. 3 and 5 for~a! r z
(p)5r z

(p8)50.32d and

~b! r z
(p)5r z

(p8)50.1d corresponding to Fig. 6~region III!.
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APPENDIX: EVALUATION OF Upp8

By noticing the identity

1

~2p!2E d2q'

eiq'•r'

q'
2 1a2

5
1

2p
K0~aur'u!, ~A1!

with a being a positive number andK0 the modified Besse
function of zeroth order, we can rewrite the interaction e
ergy ~27! as

Upp8~r(p),r(p8)!

52
1

2pKd
$D 1

(p)D 1
(p8)@ h̃1~ ur'

(pp8)u,r z
(p)2r z

(p8)!

2h̃1~ ur'
(pp8)u,r z

(p)1r z
(p8)!#

1D 2
(p)D 2

(p8)@ h̃2~ ur'
(pp8)u,r z

(p)2r z
(p8)!

2h̃2~ ur'
(pp8)u,r z

(p)1r z
(p8)!#%, ~A2!

wherer'
(pp8)5r'

(p)2r'
(p8) and we have defined

h̃1~j,h!5 (
m51

`

K0~2mq0j!cos~2mq0h!, ~A3!

h̃2~j,h!5 (
m51

`

K0S 2Am22
1

4
q0j D cos~2mq0h!.

~A4!

Using the formula found in Ref.@45#, we obtain

h̃1~j,h!5
1

2 S g1 ln
q0j

2p D1
p

4q0

1

Aj21h2

1
p

4q0
(

m51

` H 1

Aj21~h2mp/q0!2

1
1

Aj21~h1mp/q0!2
2

2q0

mpJ , ~A5!

whereg is Euler’s constant.
To evaluate Eq.~A4!, we make use of the formula@46#

E
0

`

dz
cos~pAz21X2!

Az21X2
cos~mz!5K0~Am22p2X!,

~A6!

which holds forX.0 andm.p.0. By settingp51/2, we
have
1-11
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(
m51

`

K0SAm22
1

4
XD cos~mY!

5E
0

`

dz

cosS 1

2
Az21X2D

Az21X2 (
m51

`

cos~mz!cos~mY!.

~A7!

Noticing the identity

(
m51

`

cos~mz!cos~mY!52
1

2
1

p

2 (
m52`

`

@d~z1Y22mp!

1d~z2Y22mp!#, ~A8!

and taking care of the inequalityz>0, we obtain, by setting
X52q0j andY52q0h, that
n-

y
x,
.
i.

ce

A

y

.

.

ev

05171
h̃2~j,h!5
p

4
N0~q0j!1

p

4q0

cos~q0Aj21h2!

Aj21h2

1
p

4q0
(

m51

` H cos@q0Aj21~h2mp/q0!2#

Aj21~h2mp/q0!2

1
cos@q0Aj21~h1mp/q0!2#

Aj21~h1mp/q0!2 J , ~A9!

whereN0 is the Neumann function of zeroth order. We arri
at Eq.~28! by using Eqs.~A2!, ~A5!, ~A9!, and~2!.

We note thath̃1(j,h) and h̃2(j,h) become singular atj
→0. For finiteh, however, this singularity is attributed t
the first term of Eqs.~A5! and~A9!, which exactly vanishes
in the evaluation of Eq.~A2!. Therefore the resultant form

~28! is well defined even in the case ofur'
(pp8)u50 as long as

r(p)Þr(p8).
t.
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